
Lessons Learned from a Collaborative Sensor Web Prototype
Troy Ames

NASA Goddard Space Flight Center

Lynne Case, Chris Krahe, Melissa Hess
Aquilent, Inc.

Abstract: This paper describes the Sensor Web Application

Prototype (SWAP) system that was developed for the Earth
Science Technology Office (ESTO). The SWAP is aimed at
providing an initial engineering proof-of-concept prototype
highlighting sensor collaboration, dynamic cause-effect
relationship between sensors, dynamic reconfiguration, and
remote monitoring of sensor webs.

I. INTRODUCTION

The Advanced Architectures and Automation Branch of
NASA Goddard Space Flight Center developed the Sensor
Web Application Prototype (SWAP) as an engineering proof-
of-concept for technologies and architectures associated with
sensor webs. A precise and generally accepted definition of a
sensor web has not yet been formulated. However, it is
generally agreed that sensor webs have certain intrinsic
characteristics. In the context of this prototype, a sensor web
consists of platforms that are interconnected by a
communications medium so that they can exchange
commands, status, and science data. The communications
medium used was an Ethernet local area network (LAN). In
our prototype, the instruments consisted of several tipping
bucket rain gauges and a weather station equipped with an
anemometer to measure wind speed and direction. Refer to
[1] for some interesting applications and research in the area
of sensor webs in the government and private sectors.

Some sensor webs may contain instruments and sensors,
which simply perform measurements and report their data to
a centralized computing platform. In this form of sensor web,
at least one computing platform is collecting the data from all
reporting sensors and synthesizing the data into one or more
meaningful scientific products: a meteorological forecast
model output for example. More sophisticated sensor webs
consist of platforms that are equipped with instruments and
sensors that communicate with each other in order to
influence the behavior of one or more other platforms. For
example, a rain gauge platform may cause a river gauge
platform to begin to measure and report water levels at a
higher frequency to determine if flash flood conditions may
be imminent. This is a simple example of what has been
called a “collaborative sensor web” and is depicted in Fig. 1.
Collaborative sensor webs were the focus of our investigation
for the SWAP project.

Fig. 1: Collaborative Sensor Web Overview

In a collaborative sensor web, a sensor must have some
way of influencing the behavior of other sensors whether it be
through data or explicit commands. This implies that the
sensors have some “intelligence” to them in the form of data
processing algorithms or heuristics that can be applied to the
measurements they are taking. Many of the platforms that we
investigated prior to developing the prototype were “dumb”:
they simply made their measurements and reported the “raw”
data to a science processor. The concept of operation for
these “dumb” platforms is thus very simplistic: the sensors
are turned on, they collect data, and at some point a scientist
retrieves the data where it can then be processed. In order to
transform these “dumb” sensors into “smart” sensors and thus
allow them to collaborate for our prototype system, we
augmented them with microprocessors and developed
embedded software applications to provide the required
“intelligence” and thus with an ability to influence each
others behavior.

The objectives of the SWAP project were to:
§ Provide a proof of concept and feasibility of a sensor

web.
§ Identify near-term sensor web implementation issues

and challenges.
§ Identify technology gaps where additional research

will be required to achieve sensor web goals.
§ Assess the prototype’s candidate software

architecture.

II. SYSTEM OVERVIEW

The Instrument Remote Control (IRC) [2] software
produced by the Advanced Architectures and Automation
Branch was used as the primary software component within
the sensor web. IRC is a software framework for monitoring
and controlling instruments. Prior to the SWAP project, IRC
had only been used to monitor and control astronomical
instruments. One of the unique features of IRC is the ability
of users and scientists to easily specialize the software for
their instruments’ needs. The software architecture that was
assessed for SWAP involved using IRC to control and
monitor the sensor web. Each of the sensor web platforms
consisted of two components: an instrument that measured

either rainfall or wind velocity, and a microprocessor running
an embedded version of the IRC software to process the
rainfall or wind velocity data.

The Operating Missions as Nodes on the Internet (OMNI)
project selected a variety of small processors for use with the
sensors. The OMNI team configured these processors to run
with various versions of Linux and provided them to the
SWAP software development team for installation of IRC.
The processors were connected to the sensors (i.e., rain
gauges, anemometer) through serial computer port
connections. Although the processors were equipped with
wireless IP communications in anticipation that the prototype
might be field deployed, an Ethernet LAN was used
throughout the development and demonstration phases of the
prototype.

A. Scenario
The Sensor Web Application Prototype Scenario

Specification [3] provides a detailed description of the
science scenario that was used to drive the SWAP system. A
brief summary of this scenario is provided here. Fig. 2 depicts
a layout of rain gauges and weather stations around Beaver
Dam Road at the Beltsville Agricultural Research Center,
located near GSFC. In the spring when this prototype would
theoretically be deployed, the rain gauges and weather
stations would be strategically positioned to take advantage
of the typical weather patterns for that time of year and for
that location. In the spring, the prevailing winds are expected
to move from generally westerly directions (NW, W, SW)
across the region. Thus when storms form and travel to the
Beaver Dam Road region from those directions, the rain
gauges positioned furthest west would be the first to detect
the rain and thus be able to alert the other sensors in the
system of imminent rain and wind conditions. Rain gauges
positioned in the middle of the region would use the rain rate
information as well as the wind speed and direction from a
simulated radar system to predict the direction of the storm
and the probability of its future appearance in their area.
Finally, a “primary” rain gauge could synthesize the
information from all other sensors to generate a prediction.

Rain
Gauge

Rain
Gauge

Radar
Sim

Radar
Sim

Rain
Gauge

Rain
Gauge

Rain
Gauge

Weather
Station

Weather
Station

Wind Direction &
Speed

MonitorMonitor

sector scan command

data

Fig. 2: Scenario Overview

This “primary” rain gauge was so called because it was
uniquely located near the creek at Beaver Dam Road since
that is the location where floods have frequently occurred
during heavy rains.

The sensors communicate with each other and use
information from each other to produce their own predictions
and decisions. This is the collaborative nature of this sensor
web. The main objective of this scenario was to send a
“sector scan” command to a simulated radar system. This
sector scan command would modify the mode of the radar
from its nominal wide sweep mode of a broad region to a
sector scan mode so that only the smaller region of intense
weather conditions could be monitored and at a more
frequent rate. The results of the sector scan mode of the radar
system would be very useful to a meteorologist monitoring
the storm system and especially the rainfall amounts and rate,
and thus the likelihood of very rapidly rising water levels in
the creek.
The Monitor circle in the upper right corner of Fig. 2
represents a graphical user interface (GUI) to monitor the
sensor web. The GUI is not required to supporting the
scenario, but it is a useful tool to display and monitor the real
time events occurring at each rain gauge, the weather
stations, and the radar simulator.

B. Architecture
Fig. 3 depicts the high-level architecture of the system.

Each sensor (rain gauge or weather station) is connected to a
small processor by a serial RS-232 cable. The processor has
the IRC software running under the Linux operating system.
The Radar simulator ran on a desktop PC. The PC in the
lower right in the figure ran a weather station simulator since
we only had one real weather station. Each of the systems
were connected to the network using TCP/IP over Ethernet.
In deployment they would use wireless IP.

Rain
Gauge

2

Rain
Gauge

3

Rain
Gauge

4

Rain
Gauge

5

weather
station

embedded
processor
embedded
processor

Radar
Simulator

Wind
Rain

Gauge
1

embedded
processorembedded

processor

embedded
processor

embedded
processor embedded

processor

PC

weather
simulator

Fig. 3: High-level Architecture

The major challenge using IRC was to port it from a
desktop environment to an embedded processor that could be
fielded with the rain gauge and wind velocity instruments. A
benefit of this architecture is that the measured data is
processed and interpreted collocated with the instrument so
that real-time decisions can be made based on the data the
sensor is receiving. The software associated with each
platform now provides it with the capability to locally
process the measured data and to communicate these
measurements and platform operational status with other
platforms. The algorithms executed by the IRC software
interpreted the data from the local sensor as well as other
sensors in the sensor web in order to make decisions as
described in the Scenario Overview.

III. HARDWARE

The computers, described in the following sections, were
primarily chosen for their ability to run embedded
applications and operate in an outdoor environment. This
was an important consideration since it was intended that the
sensor web might eventually be deployed to the Beaver Dam
site. Physical dimensions, operating temperatures, and power
consumption were therefore significant hardware selection
criteria. By including these processors in our project, we
learned some of their limitations and techniques for slimming
down the IRC software that runs on them, as well as some
practical lessons with Linux.

A. Tri-M MZ104
We used four MZ104-based computers in our prototype

from Tri-M Systems (http://www.tri-m.com/). The MZ104
is a ZFx86, embedded pc-on-a-chip and was combined with
other hardware, such as a disk-on-chip, on boards mounted in
the shock-resistant “Can-tainer” pictured here.

We worked with Tri-M machines having two different
configurations. One had 32MB of RAM and a 128MB disk-
on-chip, while the other three Tri-M machines featured
64MB RAM and 64MB disk on chip. Physical dimensions
were 91 and 274.6 cubic inches respectively (the smaller
container was adequate).

Like all sensor computers in our prototype, the Tri-M
communicated with its associated sensor via the serial port
and with other sensor computers via Ethernet (using TCP/IP).

Unique to the MZ104 was the LinuxMZ operating system.
Based on Slackware 7, LinuxMZ is a hardware-specific
Linux variant shipped pre-installed on the device. After the
OMNI team did some initial configuration with each Tri-M,
the SWAP software team installed threading libraries, a Java
virtual machine, a Linux-specific serial communications
library, and other utilities.

B. IDAN PC-104
The IDAN PC-104 from Real Time Devices (

http://www.rtdusa.com/), like the Tri-M, was designed to
operate in embedded environments, though was more

powerful. It featured a 233MHz Geode MMX processor
running with 128MB RAM and a 2GB IDE disk. With this
hardware, the IDAN ran Red Hat Linux 6.1 and the required
Java virtual machine and serial communications library.

Consisting of independent modules hosting the processor,
an Ethernet interface, disk, and power supply, the IDAN
measures 100 cubic inches in size.

C. Matchbox
The Matchbox PC from Tiqit (http://www.tiqit.com/)

promised the best packaging solution of all embedded
computers used in our prototype. At only 5 cubic inches (and
weighing 3.3 ounces), the Matchbox could easily be mounted
inside one of our rain gauges.

In its current configuration, the Matchbox provided a
486SX processor, 1GB IBM Microdrive, and 16MB of RAM.
It ran the Red Hat Linux 6.2 operating system, Java virtual
machine, and serial communications library.

For the prototype, we used a breakout board to provide
standard connectors to power, Ethernet, and serial ports. In a
fielded situation, the board can be eliminated by connecting
directly to the 68-pin female VHDCI (Very High Density
Cabled Interconnect) connector.

D. Qualcomm Tipping Bucket Rain Gauge
The Tipping Bucket Rain Gauge, from Qualimetrics

(http://www.qualimetrics.com/), was used to measure rainfall
. The gauge features a simple see-saw like bucket at the
bottom of a funnel which tips after 0.01 inches of rain. The
tip closes a switch for 100 milliseconds, sending a pulse to
the serial line connected to the sensor computer, where IRC
counts the pulses to determine the rain rate. A custom serial
cable was created to connect the rain gauge to the computer.

The rain gauge has an accuracy of 0.5% at 0.5"/hr. In
windy conditions, the error is increased because the gauge
cannot accurately collect and report all the rain that is falling
(as some of the rain is blown over the top of the funnel).
Algorithms within IRC were developed to account for this
wind-induced error.

E. R. M. Young Weather Station
An R.M Young Weather Station

(http://www.rmyoung.com/) provided wind data for our
prototype. The weather station had other sensors attached to
the unit butonly the wind speed and direction measurements
were used for the sensor web prototype. Communicating via
a supplied junction box and a custom serial cable we
fashioned for this project, the weather station reported wind
speed and direction in ASCII messages sent multiple times
per second. IRC converted the units supplied by the weather
station into meters per second and compass direction in
degrees.

The sensor had an accuracy of ±0.3 rn/s (0.6 mph) for wind
speed and ±3 degrees for wind direction.

IV. SOFTWARE

A. Off-the-Shelf Libraries
The Meteorological Applications (MetApps) is a Java

library from the University Corporation for Atmospheric
Research. The SWAP prototype used the MetApps library to
calculate the distance and angle between two latititude and
longitude points to predict the direction and location of the
storm. It was also used to draw the wind barbs onto the
weather map used in the Monitor GUI.

The IRC software was developed using the Java 2 Standard
Edition from Sun Microsystems. Java provided the capability
to easily port the IRC software to different operating systems.
The machines used within the prototype were configured
differently including varying amounts of memory and disk
space. On machines with little disk space we needed to slim
down the installed Java Runtime Environment (JRE). To
reduce the needed disk space for the JRE we removed some
Java libraries that were not needed such as the Java graphics
toolkit.

IRC uses other COTS products such as the Apache Xerces
parser, but those are not discussed in this paper since they
were not specific to the SWAP project goals or development.

B. Instrument Remote Control
IRC is a framework for controlling and monitoring

instruments that may be distributed across a network. The
software architecture combines the platform independent
processing capabilities of Java with the power of the
Extensible Markup Language (XML), a human readable and
machine understandable way to describe structured data. A
key aspect of the architecture is that the software is driven by
an instrument description, written using the Instrument
Markup Language (IML), a dialect of XML. IML is used to
describe the command sets and command formats of the
instrument, communication mechanisms, format of the data
coming from the instrument, and characteristics of the
graphical user interface to control and monitor the
instrument. Additionally, the IRC framework allows the users
to define a data analysis pipeline, which converts data coming
out of the instrument.

 IRC provided a quick and easy way to get the sensors up
in a network communicating with each other. In this context,
a sensor is a single running instance of IRC in combination
with either a physical sensor such as a rain gauge or a set of
code to provide simulation routines.

To better understand what work was required to get a
sensor up and running, we need to briefly describe how IRC
uses IML. The main idea behind IRC and IML is to be able
to describe an instrument and as a result have software that
will allow you to communicate with that instrument. Fig. 4 is
a high-level diagram that provides some insight into what is
needed to describe a sensor.

IRC

Public Interfaces Private Interfaces

IMLIML

PAML

Rain Gauge

pipeline
config

PAML = Pipeline Algorithm Markup Language
Fig. 4: Describing a Sensor

A single sensor can contain up to two IML descriptions as

indicated in Fig. 4. The Private Interface describes how the
sensor will communicate with other things in order to do its
job. For example, a Rain Gauge Sensor which is depicted by
the IRC circle above needs to communicate with the actual
hardware rain gauge so that it can do things such as calculate
the rate at which it is raining. The second IML description is
called a Public Interface and it describes how something else
can communicate with the Rain Gauge Sensor to receive rain
rates.

In the configuration depicted by Fig. 4, the Rain Gauge
Sensor will receive some type of data each time the actual
rain gauge hardware tips, which signals 0.01 inches of rain
has been collected. The Rain Gauge Sensor would then need
to do some data analysis and execute an algorithm to
determine the rain rate. IRC provides the Pipeline Algorithm
Markup Language (PAML), an XML dialect, to plug in
science algorithms that operate on the data. PAML provides
the list of available custom algorithm types to IRC.

At runtime IRC provides a means to string two or more
data analysis algorithms together into what is called a
“pipeline”. The beginning of this data analysis pipeline is
data that is flowing into the sensor data ports. For the SWAP
prototype each sensor had a predefined pipeline configuration
executed at system start time. Fig. 5 shows the internal
software configuration of a Rain Gauge Sensor.

Fig. 5: Rain Gauge Sensor Internals

In our example the Rain Gauge Sensor is receiving the
following types of data:

§ Rain gauge hardware sends a pulse whenever the
bucket tips.

§ Another Rain Gauge Sensor is sending rain rates.
§ Weather Station Sensor is sending ground wind

speed and direction.
§ Radar Sensor is sending atmospheric wind direction

and speed.
In the case of the Rain Gauge Sensor there is only one

algorithm. All the data coming in the data ports is sent to a
Rain Rate algorithm. The Rain Rate algorithm can then
produce predictions and rain rates. The Rain Rate algorithm
output is then sent out a data port to any other sensor
connected to the Rain Gauge Sensor.

1. Commands and IML
As described earlier, IML is used to describe instruments

including the commands that an instrument accepts. IRC
provides the framework to send a command to an instrument.
In addition to IRC providing the framework to send
commands to an instrument, IRC also has the capability to
accept commands.

In the case of SWAP, neither the rain gauge hardware nor
the weather station hardware accepted any commands; both
simply transmitted data. In order to accept a custom
command in IRC, first the command must be described in
IML. Once the command is described, the logic to fulfill the
command request is developed. The following describes the
commands implemented for the SWAP prototype and how
each command was used. We also describe the effort that is
required to add custom command handling within IRC.

a) Get Sensor Location and ID –
Each sensor was located in some physical location. The

location of each rain gauge and weather station was described
in latitude and longitude. Additionally, each sensor in the
web contained a unique identifier (ID). Typically, an ID
would be something like RG1, representing rain gauge 1.
Below is a simple and very basic sample of the IML required
to add a command.

<Command name="Get Sensor Location and ID" />
IML allows for the specification of various information

such as command arguments and synchronous versus
asynchronous command execution. Later we will see what a
command argument looks like.

The location command is most useful for monitoring the
sensor web. The GUI that was used to monitor the state of the
entire sensor web contained a map of the region surrounding
the Beltsville Agricultural Research Center. In the scenario,
the rain gauges and weather stations were positioned in this
region. When the GUI started up, a command was issued to
all of the sensors in the web to obtain the location of each
sensor. Each sensor was able to provide a command response

containing a location and unique ID. The location of each
sensor was plotted onto this map.

b) Get Sensor System Time
Since each sensor in the web sent messages to all other

sensors in the web, time synchronization was important when
calculating data such as wind corrections. This command was
a basic utility to quickly determine that the clocks on various
machines were synchronized to within a second of each other.

c) Set Windspeed and Direction
The radar system used within the prototype was simulated.

Below is a portion of the public IML file that described how
to command the radar sensor.

<Command name="Set Windspeed and Direction" >

 <Field name="windSpeed" type="Integer" required="true"/>
 <Field name="windDirection" type="Compass"
 required="true"/>

</Command>

The command above was used to specify to the radar
simulator the speed and direction of the storm it would
generate. This command required two command arguments.
The windSpeed command argument contains a name, type,
and whether or not the argument is required for the command
to be valid. The type specifies the data type of the command
argument. For example, the windDirection value needs to be
of type Compass. A Compass contains a value in degrees
where 0 is north, 90 is east, and so on clockwise.

d) Sector Scan
The radar sensor also accepted a command to go into

sector scan mode. This command was only sent to the radar
sensor by the primary rain gauge sensor when its predicted
rain rate or current rain rate exceeded some threshold rate.
Recall from earlier that the primary rain gauge was called the
primary because it is located near the creek at Beaver Dam
Road that typically floods during heavy rains in that area.

e) Get Daily Measured Accumulation
Each rain gauge sensor accepted a command to retrieve the

total rain during a single day. This command was created for
testing and convenience purposes.

2. State Model
Each sensor in the web maintained some state information

such as its location, unique ID, and system time. The IRC
framework provides the capability to specify a custom state
model that is constructed on startup. Since the state model
was the keeper of information pertaining to several of the
SWAP commands, it was a natural approach to use the state
model to respond to several of the commands.

For SWAP, two state models were created. The more
generic SWAP state model tracked the sensors location, id,
and system time. The second state model was used for the

rain gauge sensors. The rain gauge state model extended the
functionality provided by the generic SWAP state model to
be able to track rain pulses. The rain gauge sensor was
responsible for processing rain rates and predictions. In order
to calculate rain rates, information from each rain gauge
bucket tip was needed. Every time the rain gauge hardware
tipped, the rain gauge sensor received a notification and
stored the time at which the tip occurred. This information
was stored in a state model so that an algorithm could make
use of the data to determine individual rain events, rain event
accumulations, and rain rates.

3. Weather Station Data Conversion
The SWAP prototype used one weather station. It reported

several pieces of data including barometric pressure,
temperature, wind speed, and wind direction. The data
coming from the weather station was received over a serial
connection and was in a raw form. The data needed to be
converted to usable units. We added a custom algorithm that
would take the raw data received from the weather station
and convert it to meters/second rather than instrument cycles.

We chose to convert the weather station units to meters per
second based on a survey of meteorological end user tools.
The algorithm retrieved the wind speed and wind direction
from the input key-value pairs. The wind speed raw value
was in counts per 0.9994 Sec. There are 6 counts per
revolution, and each revolution represents 29.4 cm of air
movement. The wind direction raw value was already
corrected by the compass reading, in tenths of a degree. The
conversion was as follows:

Wind direction (degrees)= (raw wind direction) * 0.1

Wind speed (meters per second) = (((((raw wind speed) /

6.0) * 29.4) / 0.9994) / 100.0)

The algorithm would then output new key value pairs for

wind speed and wind direction in meters per second and
degrees respectfully.

4. Rain Rate Algorithm
The Rain Rate algorithm has several functions to perform.

In general, its function is to determine rain event rain rates
and predictions. The SWAP software team met with scientists
from NASA GSFC’s Mesoscale Atmospheric Processes
Branch , Code 912, to determine how we should calculate
rain rates. The scientists explained the notion of rain pulses
and rain events. In summary, a rain pulse is considered to be
a single bucket tip from the rain gauge. A rain pulse accounts
for a specified amount of rain accumulation. In our case, each
tip represented 0.01 inches of rain. A rain event represents a
single rain “storm” and is comprised of a series of time
stamped rain pulses. Typically, we only calculate a rain rate
for a single rain event. Imagine if it rains early in the morning
and then again in the late afternoon. Two separate rain events

have occurred and therefore we would be interested in the
intensity of each storm individually. A specified period of
time is used to determine when one rain event ends and
another begins. Once the specified amount of time occurs
between rain pulses a new event is created. In a real
operational environment, a half hour between pulses
constitutes a new rain event.

The next factor to think about when determining rain rates
is the ground wind. If the winds exceed a certain rate then the
rain gauge is not collecting as much rain as is really falling.
After consulting the NASA scientists we learned that
adjusting the rain rates for the ground wind is very
complicated and can potentially introduce errors in the data.
With this in mind, it was decided that since this was a
prototype about sensors interacting and making use of each
others data, we would not worry about the absolute scientific
correctness for ground wind correction. Rather, we came up
with a simplistic way to adjust the rain rates to account for
ground winds, which is discussed under Wind Corrections.

5. Predicted Rain Rates
The predicted rain rate algorithm receives data from all of

the other rain gauge sensors in addition to the radar sensor.
The algorithm has information about the movement of the
storm based on the storm velocity (i.e. wind speed and
direction) provided by the radar system simulator.

When the algorithm receives messages that it is raining at a
remote rain gauge, it will look at the most recent data it has
received from the radar sensor and determine if it is in the
path of the storm. If it determines that it is in the path of the
storm, it simply assumes that the rate at which it is raining at
the remote rain gauge sensor is the rate at which it will
eventually be raining at it. If it is not in the storm path then it
has no predicted rain rate.

In addition to predicting a rain rate, it will also predict the
time it will start to rain at its location. The message from the
remote rain gauge sensor contains the remote sensor location.
To determine when it will start raining at the local rain gauge,
the algorithm will determine the distance between itself and
the remote rain gauges. The algorithm makes use of the wind
speed (meters per second) from the radar data to determine
how long it will take for the storm to arrive. The algorithm
applies a basic [(Rate * Time) = Distance] formula to
predict the time when it will start raining.

6. Wind Corrections
Wind corrections are accounted for within the rain rate

algorithm. When a rain gauge sensor receives data from a
weather station sensor, it will determine if the wind data is
applicable, based on the proximity between itself and the
weather station. If the winds exceed a certain rate, then the
rain gauge is not collecting as much rain as is really falling.
The wind data is stored in the sensor’s state model for use by
the rain rate algorithm.

The SWAP prototype made some assumptions to greatly
simplify the handling of ground wind data. The algorithm is
not accurate from a scientific standpoint. The goal of the
prototype was not to necessarily provide accurate
meteorological algorithms, but rather to have different types
of sensors sharing and making use of each others’ data. A
simple lookup table approach was used to store ranges of
values with percentages of rate adjustments.

When the rain rate algorithm receives a new rain pulse, it
will query the state model to determine if there is any wind
data that could be applied to adjust the pulse amount. If wind
data is available, then the average wind speed between the
previous rain event pulse and the new pulse is calculated. The
average wind speed and the parameter set are used to adjust
the pulse amount. In the case where we have wind data but it
is the first pulse in the event, we take the average of the wind
data that precedes the new rain pulse by a few seconds.

7. Radar Simulator
Since the SWAP prototype was demonstrated in a

controlled setting, we did not have access to a real radar
system. We needed to have control of when it was raining
and where the storm was moving to demonstrate the SWAP
prototype.

The SWAP prototype constructed a radar simulator to play
two key roles within the scenario. The radar simulator
provided atmospheric wind direction and speed so the rain
gauge sensors could predict movement of the storm.
Additionally, the simulator accepted and responded to the
sector scan command.

The SWAP team briefly investigated radar systems to
determine the nature of the data that they produce. Based on
the investigation, a radar simulator was built that was capable
of parsing real vector wind profile files from the National
Weather Service. We constructed a simulated data file so that
we could control the movement of the storm.

IRC was used to represent the radar sensor and to also
simulate the radar system. The radar data simulation was easy
to create given the IRC pipeline and algorithm capabilities.
We constructed a radar simulation algorithm by simply
describing a new algorithm in PAML and then coding the
logic. This algorithm stored state information, generated data
when requested, and responded to the sector scan command
when the sector scan command was received from the
primary rain gauge.

8. Weather Station and Rain Gauge Simulators
In addition to simulating the radar system data, the SWAP

prototype was also capable of simulating rain gauge bucket
tips and raw weather station data. There are three reasons
behind building these simulators. First, although the SWAP
prototype was originally supposed to include two weather
stations, we only received one. Therefore, to keep the
scenario as originally planned, we simulated the second

weather station. Second, the computers that were to be
connected to the rain gauges and weather stations were
received only a few weeks prior to the SWAP prototype
demonstration. Thus, for testing purposes, the simulators
provided a means to fully test the scenario without actually
using true weather station and rain gauges. When the time
came to actually connect all of the hardware contained in the
prototype, the software was already tested.

3.10 Weather Map
The final piece of functionality that was added to complete

the software for the SWAP prototype was a sensor web
monitoring system. The monitoring system provides a
graphical weather map to display status of the complete
sensor web. Fig. 6 depicts the weather map monitoring
system.

Fig. 6 is a complete IRC screenshot. On the left side of the
image is the default IRC commanding tree. Each sensor is
contained in the commanding tree, and the radar sensor
commands are expanded. The default IRC GUI provided a
means to configure the storm movement by issuing a “Set
Windspeed and Direction” command to the radar sensor. The
only custom portion of this interface is the weather map. The
weather map algorithm received data from the rain gauge
sensors, weather station sensors, and radar simulator in order
to plot their locations and show the rain rates at each location.

V. LESSONS LEARNED

The SWAP prototype demonstrated that collaborative
sensor webs using existing sensors can be developed. The
sensors must be augmented with additional processing and
software to use data from other sensors in the network. The
following sections provide additional technical lessons
learned relative to the actual implementation of the “smart
sensors” using our candidate architecture.

Fig. 6: Sensor Web Monitoring System

A. Assessment of IRC-based Architecture.
IRC provided the software architecture and framework that

allowed for the SWAP prototype to be constructed and
functional in such a short period of time. The complete
prototype was functional within approximately three and half
calendar months, using only 1.5 FTE (full-time equivalent)
software engineers. Without IRC this would not have been
possible. IRC is a viable component in a sensor web for the
command and control of the individual sensors. Specifically,
through the use of IML IRC provided the communications
fabric that enabled the sensors to communicate and share data
very quickly. Several key conclusions relative to using IRC
within a sensor web are listed below.

§ IRC provided a framework that made it easy to
quickly communicate with the rain gauges and
weather stations.

§ IRC can be used to simulate new sensors /
instruments. Adding simulators for the sensor web
prototype proved to be very simple and extremely
useful. The simulators provided a great way to test
the software. As sensor webs are further explored it
will be critical to be able to simulate instruments,
because critical testing can be performed prior to the
purchase of potentially expensive hardware.

§ IRC can be made to run on small devices but
additional work needs to be performed to tune the
performance of the software in an embedded
processor environment.

For example, the sensors communicated with one
another using TCP communications. TCP is a
connection-oriented protocol and therefore slows
communications. Another approach would be to
explore UDP, which is a connectionless
communication protocol. IRC provides the
framework to add additional communication
protocols.

Additionally, XML parsing needs to be re-evaluated
as a means to tune IRC performance. All of the
XML and PAML files are parsed and validated each
time IRC is started. It would be nice to remove the
need to validate the documents. Validation during
parsing consumes a large amount of memory during
startup. If the files were developed using the IRC
Configuration Editor, we know that they are
syntactically correct, so we could skip the validation
step during parsing.

The number of threads needs to be reduced. The
small processors could not handle the amount of
memory and system resources that IRC was
consuming. As an extensible architecture, there are

many places for plugging in new modules. Many of
these points of extension are accomplished through a
publish and subscribe mechanism which uses a
couple of threads per instantiation of subscribers.
The use of threads needs to be evaluated to ensure
that new threads of execution are used only when
necessary.

B. Implementation issues and challenges

1. Defining the algorithms is the greatest challenge.
IRC provides the framework for constructing new

algorithms and for passing information to other algorithms
and instruments. The biggest challenge was to identify the
appropriate science algorithms for the scenario that was
simulated. To determine the characteristics of the algorithms
to be used for the SWAP prototype, the software team
consulted NASA scientists to determine the conditions that
would establish when each individual storm begins and ends.
Additionally, they consulted with scientists to determine how
rain rates should be calculated and how ground winds affect
rain rates. Currently, the process to adjust rain rates based on
ground winds is being investigated, and does not have a
definitive answer. Therefore, for the prototype we provided a
simple approach that was not scientifically meaningful.

2. Scalability
The SWAP prototype consisted of only eight sensors, in

addition to the monitoring GUI. The sensor web was small
and thus provided a convenient testbed for determining how
sensors could share data. As a sensor web grows in scale, the
number of interactions will increase significantly, and it will
certainly become more complex to study and evaluate the
total number of processing and communications states that it
can theoretically possess. A key problem moving forward
will be planning for problems with many remote sensors
communicating together toward a common goal. IRC does
not currently address many issues that would arise in a large
sensor web. For example, sensors will have to be added or
removed without disrupting the entire sensor web. Network
traffic loads will vary depending upon the number of
available multiple modes of sensor-sensor interaction. IRC
needs to be able to dynamically adjust to these mode changes
instead of establishing a set of static conditions at startup
time. During the demonstration, we eliminated some of the
connections to enable IRC to run more efficiently and to
minimize any possibility of running out of available resources
(e.g., memory, disk storage) without further optimization of
communication ports and protocols. In conclusion, although
IRC was used successfully to prototype a small sensor web, it
would not in its present form be able to support a large
number of sensors that have limited resources (i.e., memory
and disk).

3. Porting IRC to Linux
Porting IRC to Linux was easy. It simply required

installation of two sets of libraries. First, we needed a Linux
implementation of the Java CommAPI, which is used in IRC
for serial port communications. The RXTX library (
http://www.rxtx.org/), available under the LGPL license,
provided this support. Second, we needed libraries to support
native Linux threads, though only on the LinuxMZ machines
(RedHat Linux already provided them). Since LinuxMZ is
based on Slackware 7, we used libraries obtained from their
site (http://www.slackware.org/).

4. Sensor Web Weather Mapping
Implementation of a weather sensor web would require a

more sophisticated user interface. We recommend
integrating an existing 3rd party application or library for this
purpose. A candidate is MetApps (Meteorological
Applications), some of whose components were used in this
prototype.

C. Technology Gaps
The variety of sensor computers we employed presented us

with various challenges, successes, and failures.
§ The IDAN machine performed flawlessly

throughout the project, keeping up with the volume
of data, algorithms, and communications with other
sensors.

§ The Tri-M machines gave mixed results. During
installation we trimmed the JVM and IRC to fit on
the 64MB disk. While testing we experienced slow
startup times (~3 minutes), intermittent errors in the
Linux threading library, and occasional system
failures due to static electricity.

§ With only 16MB of RAM, the Matchbox PC could
not keep up with the demands of standard Java and
IRC. It rarely reported its data to the sensor web,
even after minimizing the number of connections it
needed to make to other computers. Despite this
performance, the Matchbox was reliable.

As a result, we identified the optimum configuration for
current SWAP implementation as 64 MB RAM and 128 MB
disk. When taking into account its size, reliability, and
ability to run standard Red Hat Linux, future iterations of the
Matchbox would be ideally-suited. As of this writing,
however, a 32MB RAM Matchbox PC is the next planned
release.

There are other approaches to reduce SWAP’s hardware
requirements. Research areas include the following:

§ Test with Java Standard Edition 1.4 – it reduces the
need for a thread per TCP/IP connection; this may
reduce runtime resource needs and allow for full
communication between all sensors

§ Identify tuning opportunities within IRC – startup
times & memory usage for IRC might be reduced,

for example, by optimizing or replacing the XML
parsing with another approach

§ Experiment with Java 2 Micro Edition -- the CDC
(Connected Device Configuration) with the
Foundation Profile is the best place to start our
research. Together, they are the closest to the J2SE
feature-wise, and are also only one of two
combinations available for Linux at the moment (at
least from Sun). The CDC is intended for 32-bit
microprocessor/controller with more than 2.0MB of
total memory.

ACKNOWLEDGMENT

We thank Dr. Marshall Shepherd for working with us to
develop the initial science scenario and vision for the
prototype. Mr. Brad Fisher, Dr. Eyal Amitai, and Dr. Ali
Tokay consulted with us about algorithms for tipping bucket
rain gauges and wind correction. They also provided us with
loaner rain gauges to test and demonstrate our system. James
Rash (NASA), Ron Parise (CSC), Keith Hogie (CSC), and Ed
Criscuolo (CSC) worked on the hardware and provided us
with our loaner weather station as well as many cables.
Xuewu Cai, Anass Manjra, Tony Ritrivi, and Mike Mersky of
Aquilent helped construct and test the SWAP prototype and
supported the demonstration. Last but not least, Julie Breed,
the Code 588 Branch Head at GSFC, and Steve Talabac of
Aquilent provided us with guidance and editing of content for
our documentation, demonstration, and web site.

REFERENCES

[1] Steve Talabac, Lynne Case, Mike Mersky (designer)
“GSFC ISC Sensor Web Research”, web page
pointing to Sensor Web research around the world as
well as the subject material of this paper.
http://pioneer.gsfc.nasa.gov/public/sensorweb/

[2] Troy Ames, “Instrument Remote Control Project”
web site at: http://pioneer.gsfc.nasa.gov/public/irc

[3] Lynne Case, “Sensor Web Application Prototype
Scenario Specification”, obtain at:
http://pioneer.gsfc.nasa.gov/public/sensorweb/SWA
P Prototype.doc

